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New methods for shape and depth determinations from SP data

El-Sayed M. Abdelrahman∗, Hesham M. El-Araby∗, Abdel-Rady G. Hassaneen‡,
and Mahfooz A. Hafez‡

ABSTRACT

We have extended our earlier derivative analysis
method to higher derivatives to estimate the depth and
shape (shape factor) of a buried structure from self-
potential (SP) data. We show that numerical second,
third, and fourth horizontal-derivative anomalies ob-
tained from SP data using filters of successive window
lengths can be used to simultaneously determine the
depth and the shape of a buried structure. The depths and
shapes obtained from the higher derivatives anomaly
values can be used to determine simultaneously the ac-
tual depth and shape of the buried structure and the opti-
mum order of the regional SP anomaly along the profile.
The method is semi-automatic and it can be applied to
residuals as well as to observed SP data.

We have also developed a method (based on a least-
squares minimization approach) to determine, succes-
sively, the depth and the shape of a buried structure
from the residual SP anomaly profile. By defining the
zero anomaly distance and the anomaly value at the ori-
gin, the problem of depth determination has been trans-
formed into the problem of finding a solution of a nonlin-
ear equation of form f (z)= 0. Knowing the depth and
applying the least-squares method, the shape factor is
determined using a simple linear equation.

Finally, we apply these methods to theoretical data
with and without random noise and on a known field
example from Germany. In all cases, the depth and shape
solutions obtained are in good agreement with the actual
ones.

INTRODUCTION

One of the most important exploration problems is esti-
mating the shape and depth of a buried structure. Different
methods have been developed to determine the depth and the
shape of the buried structure from self-potential (SP) data.
The methods generally fall into one of the two categories. The
first category includes 2D and 3D continuous modeling and
inversion methods (Guptasarma, 1983; Furness, 1992; Shi and
Morgan, 1996), which require current density and resistivity
information as part of the input, along with some depth in-
formation obtained from geological and/or geophysical data.
Thus, the resulting model can vary widely depending on these
factors, but still give a calculated curve in close agreement with
the observed data. The second category includes fixed simple
geometry methods, in which the sphere, horizontal-cylinder,
and vertical-cylinder models determine the depth and shape of
the buried structure from residuals and/or observed SP data.
The models may deviate from geological reality, but they are
usually sufficient to determine whether the form and magni-
tude of the calculated SP effects are close enough to those
observed to make the geological interpretation reasonable.
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The advantage of fixed geometry methods over 2D and 3D
continuous modeling and inversion methods is that they do
not require current density, resistivity, and depth information
obtained from geological and/or geophysical data, and they
can be applied if little or no factual information other than
the SP data are available. For interpreting isolated simple
source bodies, fixed geometry methods can be both fast and
accurate.

Several methods have been developed to interpret SP data
using a fixed simple geometry (Yungul, 1950; Meiser, 1962;
Paul, 1965; Battacharya and Roy, 1981; Rao and Babu, 1983;
Abdelrahman and Sharafeldin, 1997; and many others). How-
ever, most of these methods demand an a priori knowledge of
the shape (shape factor) of the anomalous body, for example,
whether the source is a sphere or a cylinder.

Few methods have been developed to determine the shape
of the buried structure from a SP anomaly profile. These in-
clude, for example, the least-squares method (Abdelrahman
et al., 1997a), numerical gradient method (Abdelrahman et al.,
1997b), and derivative analysis method (Abdelrahman et al.,
1998). In the present paper, we have extended the deriva-
tive analysis method (Abdelrahman et al., 1998) to higher
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derivatives to estimate the depth and shape of the source of
a SP anomaly profile. We show that numerical second-, third-,
and fourth-derivative anomalies obtained from observed SP
data using filters of successive window lengths can be used to
simultaneously determine the depth and shape of the buried
structure and the optimum polynomial order for representing
the regional SP anomaly. The method is superior to other pub-
lished fixed geometry methods because it involves using sim-
ple models convolved with the same second, third, or fourth
horizontal-derivative filter as applied to the observed SP data.

We have also developed a method (based on a least-squares
minimization approach) to determine, successively, the depth
and the shape of a buried structure from the residual SP
anomaly profile. The least-squares method presented here can
be applied when an individual SP anomaly is found that stands
out so clearly that it can be separated from the regional back-
ground, and is so simple in appearance that it can be modeled
as a single polarized body.

Finally, the validity of the methods is tested on a theoretical
example with and without random noise and on a field example
from Germany.

HIGHER DERIVATIVES ANALYSIS METHOD

Following Abdelrahman et al. (1998), the general expression
for SP anomaly produced by some simple polarized geologic
structure can be represented by the following equation:

V(xi , z, θ,q) = K
xi cos θ + zsin θ(

x2
i + z2

)q , i = 1, 2, . . . , N

(1)

where z is the depth, θ is the angle of polarization, K is the
electric dipole moment, xi is the position coordinate, and q is a
factor related to the shape of the buried structure and is equal to
0.5, 1.0, and 1.5 for the semi-infinite vertical cylinder, horizontal
cylinder, the sphere, respectively. The limits of applicability of
equation (1) are described in Yungul (1950)

Let us consider five observation points (xi − 2s, xi −
s, xi , xi + s, xi + 2s) along the anomaly profile where s=
1, 2, 3, . . . ,M spacing units is called the window length or
graticule spacing. Using equation (1), the horizontal gradient
of SP (dV/dx) using a central difference formula is given by

Vx(xi , z, θ, s) = K

2s

{
(xi + s) cos θ + zsin θ[

(xi + s)2 + z2
]q

− (xi − s) cos θ + zsin θ[
(xi − s)2 + z2

]q
}
. (2)

The second horizontal derivative SP anomaly is obtained
from equation (2) as

f4(z,q, si )

=
{

z2q[(s2+ z2)q(9s2+ z2)q− 3(s2+ z2)q(25s2+ z2)q+ 2(9s2+ z2)q(25s2+ z2)q]
[z2q (4s2+ z2)q+ 3(4s2+ z2)q(16s2+ z2)q− 4z2q (16s2+ z2)q]

(4s2+ z2)q(16s2+ z2)q

(s2+ z2)q(9s2+ z2)q(25s2+ z2)q

}
.

(7)

Vxx(xi , z, θ, s) = K

4s2

{
(xi + 2s) cos θ + zsin θ[

(xi + 2s)2 + z2
]q

−2xi cos θ + 2zsin θ
(x2

i + z2)q
+
(
xi − 2s

)
cos θ + zsin θ[

(xi − 2s)2+ z2
]q

}
. (3)

Using the value of Vxx at xi = 0, equation (3) can be written
as

Vxx(xi , z,θ,s) = Vxx(0)
2zsinθ

[
z2q(4s2 + z2)q

z2q − (4s2 + z2)q

]

×
{

(xi + 2s)cosθ + zsinθ[
(xi + 2s)2 + z2

]q − 2xi cosθ + 2zsinθ(
x2

i + z2
)q

+ (xi − 2s)cosθ + zsinθ[
(xi − 2s)2 + z2

]q }
. (4)

The numerical derivative values of equation (4) at xi = s and
xi = − s are added (Abdelrahman et al., 1998) to obtain the
following nonlinear equation:

d2i − f2(z,q, si ) = 0, i = 1, 2, 3, . . . , L (5)

where f2(z,q, si ) is a nonlinear function defined by

f2(z,q, si ) = z2q(4s2 + z2)q[(s2 + z2)q − (9s2 + z2)q]
(s2 + z2)q(9s2 + z2)q[z2q − (4s2 + z2)q]

,

and where

d2i = Vxx(s)+ Vxx(−s)
Vxx(0)

.

For each value of q, equation (5) is solved for the depth (z)
using the Newton-Raphson method (Demodivich and Maron,
1973). For a fixed window length, the computed depths are plot-
ted against the shape factor representing continuous window
curves. The solution of the depth and shape is read at the com-
mon intersection of the window curves. Theoretically, any two
curves associated with two different values of sare enough to si-
multaneously determine zand q. In practice, more than two val-
ues of s are desirable because of the presence of noise in data.

Following the same approach used to derive equation (5), we
obtain the nonlinear functions f3(z,q, si ) and f4(z,q, si ) for the
third and the fourth derivative methods, respectively, as

f3(z,q, si )

= 4[(s2 + z2)q(9s2 + z2)q][(4s2 + z2)q − (16s2+ z2)q]
3[(4s2+ z2)q(16s2+ z2)q][(s2+ z2)q− (9s2+ z2)q]

,

(6)

and
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The di values for the third- and fourth-derivative methods
are similar to those for second derivatives, except that Vxx is
replaced by Vxxx, and Vxxxx, respectively.

In all cases, the numerical values of the derivative anomalies
are computed from the observed data V(xi ) from the following
equations:

Vxx(xi ) =
V(xi + 2s)− 2V(xi )+ V(xi − 2s)

4s2
, (8)

for the second-derivative anomalies,

Vxxx(xi )

= V(xi + 3s)− 3V(xi + s)+ 3V(xi − s)−V(xi − 3s)
8s3

,

(9)

for the third-derivative anomalies, and

Vxxxx(xi ) =
V(xi + 4s)− 4V(xi + 2s)+ 6V(xi )− 4V(xi − 2s)+ V(xi − 4s)

16s4
, (10)

for the fourth-derivative anomalies.
Note that real data contain measement errors, which may be

compounded by errors in generating the window curves when
using higher derivative anomalies. In spite of this, high struc-
tural resolution may be achieved at the expense of decreased
tolerance to instrument reading errors. However, since the in-
terpretation requires only a relatively short length of profile,
the problem may be effectively overcome by increasing the
number of measurements made within the restricted length of
profile. The smoothed data may then be interpreted uniquely
and precisely in terms of the assumed structure. At the same
time, using a relatively short length of profile results in a very
high rejection of the neighboring disturbances.

However, the accuracy of the results obtained using the
above methods depends upon the accuracy to which the or-
der of the polynomial representing the regional SP anomaly
can be determined from the measured data.

OPTIMUM-ORDER REGIONAL DETERMINATION

Geologic interpretation of geophysical data invariably in-
volves isolation of the geophysical anomaly in the presence of
unwanted (or regional) data. Interpretation usually requires
subtracting the estimated regional effect from the observed
profile. However, serious distortions in the magnitude and ex-
tension of residual SP anomalies result from methods such as
those defined by Peters (1949), Syberg (1972), Agarwal and
Lal (1971), and Abdelrahman et al. (1985). The conclusion is
inescapable that the resulting residuals (or derivatives) can-
not yield a reliable geologic interpretation (Hammer, 1977).
The argument probably applies in all forms of data processing,
even processing in the frequency domain (Nettleton, 1976).
If, however, the observed SP profile can be considered as the
combined effect of a residual component due to a purely lo-
cal structure and a regional component of any order p, then
it is possible to formulate procedures to determine the opti-
mum order of the regional SP anomaly along the profile and
to obtain a true geologic interpretation.

The shapes and the depths of the buried structure computed
from the different derivative anomalies can be used to deter-
mine the optimum order of the regional anomaly and to esti-
mate the actual shape and depth of the buried structure. The
procedure depends on the fact that the p-order derivative re-
moves the effect of p − 1 order (and less) regional anomaly.
The following cases are given for illustration.

Case 1.—If the shapes and depths (q2, z2), (q3, z3) of
the buried structure computed from the second- and third-
derivative anomalies are equal, then the regional anomaly can
be represented by a zero- or first-order polynomial, and the
true shape and depth are q2 and z2 (or q3 and z3). This is true
because both second- and third-derivative operations remove
the zero- or first-order regional SP anomaly from the data.

Case 2.—If q2 6=q3 and z2 6= z3 but q3=q4 and z3= z4, where
q4 and z4 are computed from the fourth-derivative anoma-

lies, the optimum-order of the regional anomaly can be rep-
resented by a second-order polynomial, and the true shape
and depth are q3 and z3 (or q4 and z4). In this case, the second-
derivative anomalies are generally distorted by the unremoved
second-order regional anomaly, and consequently, the depth
and the shape computed from the second-derivative anoma-
lies are highly erroneous.

The above procedure is easily generalized in case of using
fifth and/or higher derivative anomalies .

LEAST-SQUARES METHOD

Here, we have chosen the least-squares method to find the
depth and the shape parameters of simple geometrical bodies
from residual SP anomalies. This is because of its mathematical
robustness when the recorded data are, in the words of Jackson
(1972), “inaccurate, insufficient, and inconsistent.”

For all shapes (function of q), equation (1) gives the following
relationship at the origin (xi = 0):

K = V(0)z2q−1

sin θ
, sin θ 6= 0, (11)

where V(0) is the anomaly value at the origin.
Setting equation (1) to zero, we obtain the following

equation:

cot θ = −z

x0
, (12)

where x0 is the zero anomaly distance.
Using equations (11) and (12), equation (1) can be written

in a normalized form as

x0V(xi , z,q)
V(0)(x0 − xi )

= z2q(
x2

i + z2
)q , xi 6= x0. (13)

In this way, we are able to eliminate K and θ from equation (1)
by introducing two pieces of information, namely V(0) and x0.



Shape and Depth from SP Data 1205

Taking the logarithm of both sides of equation (13), we
obtain

R(xi , z,q)= ln
[

x0V(xi , z,q)
V(0)(x0 − xi )

]
= q ln

z2

x2
i + z2

, (14)

where R(xi , z,q) represents the logarithm of the normalized
residual anomaly.

Again, for all shapes, equation (14) gives the following value
at xi =a:

R(a) = q ln
z2

a2 + z2
,a 6= 0. (15)

Using equations (14) and (15), we obtain the following
nonlinear equation in the depth (z):

R(xi , z) = R(a)W(xi , z), (16)

where

W(xi , z) =
ln

z2

x2
i + z2

ln
z2

a2 + z2

.

Consequently the shape factor (q) is eliminated from equa-
tion (14) by introducing R(a), that is, the potential at any point
(a) on the x-axis other than zero.

The unknown depth (z) in equation (16) can be obtained by
minimizing

ϕ(z) =
N∑

i=1

[L(xi )− R(a)W(xi , z)]2, (17)

where L(xi ) denotes the logarithm of the normalized observed
SP anomaly at xi as shown in equation (14).

Setting the derivative of φ(z) with respect to z to zero leads
to the following nonlinear equation in z:

f (z) =
N∑

i=1

[L(xi )− R(a)W(xi , z)]W∗(xi , z) = 0, (18)

where

W∗(xi , z) = d(W(xi , z))
dz

.

Equations (18) can be solved for z using standard methods
for solving nonlinear equation. Here, it is solved by an iteration
method (Demidovich and Maron, 1973).

Substituting the computed depth (zc) as a fixed parameter in
equation (14), we obtain

R(xi ,q) = q ln
z2

c

x2
i + z2

c

, (19)

The unknown shape factor (q) in equation (19) can be obtained
by minimizing

ψ(q) =
N∑

i=1

[L(xi )− R(xi ,q)]2
, (20)

where L(xi ) denotes the logarithm of the normalized residual
SP anomaly at xi as shown in equation (14).

Setting the derivative of ψ(q) with respect to q to zero leads
to the following linear equation after simplification:

qc =

N∑
i=1

L(xi ) ln
z2

c

x2
i + z2

c

N∑
i=1

[
ln

z2
c

x2
i + z2

c

]2 . (21)

Once zc and qc are known, the polarization angle θ can be
determined from equation (12). Knowing θ , the electric dipole
moment K can be determined from equation (11).

Finally, we measure the goodness of fit between the observed
and the computed SP data for each (a) value. The most com-
mon way to compare two SP anomaly profiles is to compute
the root-mean-square (rms) error between the observed val-
ues and values computed from the estimated parameters z,q, θ ,
and K . The model parameters which give the least sum squared
differences are the best. In this way, we were able to select the
most appropriate source parameter solutions.

We feel our approach is more advantageous than any least-
squares inversion technique in determining the model param-
eters of the buried structures from a residual SP anomaly
because it does not try to simultaneously solve for all un-
knowns. Rather it begins by solving for two parameters. The
other parameters are then solved for in simple order. The
optimization problem for obtaining the depth, shape, polar-
ization angle, and dipole moment simultaneously is highly
nonlinear.

The advantage of the present least-squares method over the
higher derivatives analysis method presented earlier is that the
depth and shape parameters can be computed from all ob-
served residual data points. However, we recommend use of
the higher derivatives analysis method when V(0) and x0 are
difficult to determine from SP data due to the presence of re-
gional components in the data.

Up to this stage, we have assumed knowledge of the origin
when applying the higher derivatives and least-squares meth-
ods. In practice, a field traverse will have an arbitrary origin,
in which case the position of the structure (xi = 0) in equation
(1) must first be determined. In most cases, the maximum and
minimum values of the profile can be used to determine the
correct location xi = 0. A straight line joining the maximum to
minimum of the profile will intersect the anomaly curve at the
point xi = 0 (Stanley, 1977).

SYNTHETIC EXAMPLE

We compute a theoretical SP anomaly of a horizontal cylin-
der (q= 1, z= 3 m, K =−600 mV, and θ = 40◦ ) at 51 points with
spacing of 1 m (Figure 1). The anomaly profile is subjected to
separation techniques using the numerical derivative methods.
Four successive second-, third- and fourth-derivative windows
(s= 2, 3, 4, and 5 m) were applied to each set of input data. The
methods are then applied to obtain the window curves from the
numerical second-, third- and fourth-derivative anomalies, re-
spectively. The results are shown in Figure 2 and summarized
in Table 1.

The correct solution for the theoretical horizontal-cylinder
model occurs at the common intersection of the window curves
in case of using second-, third-, and fourth-derivative methods.
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Figure 2 shows the intersection at the correct location q= 1
and z= 3 m.

Next, random errors of 5% were added to the SP anomaly to
simulate noisy data. Four successive second-, third-, and fourth-
derivative windows (s= 2, 3, 4, and 5 m) were then applied to
the data. In this way, four sets of noisy second-, third- and
fourth-derivative anomaly profiles were obtained from the SP
anomaly profile. Adapting the same interpretation technique
described above, the results are shown in Figure 3 and summa-
rized in Table 1.

When the data are noisy, the window curve intersections
are subject to interpretation. In the case of the noisy theoret-
ical SP anomaly, the window curves generated from second-
derivative anomalies intersect each other in a narrow region
where 0.75>q2 > 1.2 and 3.6 m> z2 > 2.7 m (Figure 3a). The
central point of this intersection (intersection point) occurs
at approximate location z2= 3.05 m and q2= 0.96. The win-
dow curves generated from the third-derivative anomalies in-
tersect each other at q3= 1.04 and z3= 3.2 m (Figure 3b).
Figure 3c shows that the window curves generated from the
fourth-derivative anomalies intersect each other in a narrow
region where 1.2>q4 > 0.7 and 2.6 m> z4 > 3.6 m. The central
point of this intersection occurs at the approximate location
q4= 0.94 and z4= 3.05 m (Table 1). Thus, values of the shape
and depth obtained from second-, third-, and fourth-derivative
anomalies obtained from the noisy theoretical SP anomaly are

Table 1. Numerical results for computed shape and depth
obtained from the synthetic example using the higher
derivatives method.

Second- Third- Fourth-
derivative derivative derivative

method method method

Using data q2 = 1.0 q3 = 1.0 q4 = 1.0
Without errors z2 = 3.0 z3 = 3.0 z4 = 3.0
Using data with q2 = 0.96 q3 = 1.04 q4 = 0.94
5% random errors z2 = 3.05 z3 = 3.20 z4 = 3.05

FIG. 1. A typical self-potential anomaly profile over a horizon-
tal cylinder model.

FIG. 2. Family of window curves of zas a function of q for s= 2,
3, 4, and 5 m using the present approach as obtained from noise
free SP anomalies. Data interpretation of Figure 1 using (a)
second-derivative method, (b) third-derivative method, and (c)
fourth-derivative method.
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FIG. 3. Family of window curves of z as a function of q for
s= 2, 3, 4, and 5 m using the present approach as obtained from
noisy SP anomalies. Data interpretation of Figure 1 using (a)
second-derivative method, (b) third-derivative method, and (c)
fourth-derivative method.

in excellent agreement with the actual ones even when the data
contain errors.

On the other hand, we have also applied the present least-
squares method to the same noisy SP data of the theoretical
horizontal-cylinder model . Equations (18), (21), (12), and (11)
were used to determine the depth, the shape factor, the po-
lariztion angle, and the electric dipole moment, respectively,
using all possible cases of (a) values. The results are shown in
Table 2. The best-fit model parameter are z= 2.99 m, q= 0.996,
θ = 39.97◦, and K = − 603.7 mV. The model parameters thus
obtained from the present least-squares method are also in ex-
cellent agreement with the actual parameters (z= 3 m, q= 1,
θ = 40◦, and K = − 600 mV).

FIELD EXAMPLE

Figure 4 shows the SP anomaly over a graphite deposit in
the southern Bavarian woods, Germany. The SP measurements
were performed and described by Meiser (1962). This anomaly
profile of 520-m length (Figure 4) was digitized at an interval
of 10.41 m. Separation techniques were applied to the digitized
values using the different derivative methods. Four successive
derivative windows (s= 20.82, 31.23, 41.64, and 52.05 m) were
applied (Figure 5). The second, third, and fourth derivatives
thus obtained were used to generate the window curves shown
in Figure 6. The results are summarized as follows:

q2 = 0.79 z2 = 43 m,
q3 = 0.9 z3 = 53 m,
q4 = 1.05 z4 = 51 m.

Since q2 6=q3≈q4 and z2 6= z3≈ z4, then the regional anomaly
along the measured SP profile can be represented by a second-
order polynomial. Also, the shape factor and the depth ob-
tained by the higher derivatives method are q= 0.9 and
z= 53 m, respectively. This suggests that the shape of the buried
structure resembles a 2D horizontal-cylinder model buried at
a depth of 53 m.

FIG. 4. Measured and calculated SP anomaly over a graphite
ore body, southern Bavarian woods, Germany (after Meiser,
1962).



1208 Abdelrahman et al.

On the other hand, the least-squares method was also ap-
plied to the same anomaly profile of the field example to deter-
mine the model parameters of the buried structure. The values
of V(0) and x0 usd in the least-squres method were −500 mV
and 72 m (Figure 4) respectively, using the centeral (a) val-
ues on the profile. Then we computed the root-mean-square
error (rms) between the observed values and the values com-
puted from estimated parameters z,q, θ , and K . The results are
shown in Table 3. The best-fit model parameters are z= 49.3 m,
q= .91, θ = − 55.7◦ and K = 2020 mV. The shape factor thus
obtained by the least-squares method suggests also that the
shape of the 2D source body can be represented by a horizon-
tal cylinder buried at a depth of 49.3 m. The depth obtained

Table 2. Percentage of error in model parameters of the synthetic example in case of using the present least-squares method (best
a value and minimum rms value in bold).

a Percent Percent Percent Percent rms a Percent Percent Percent Percent rms
(m) error in z error in q error in θ error in K (mV) (m) error in z error in q error in θ error in K (mV)

−25 0.538 2.738 0.471 −0.419 0.499 1 −18.56 −42.05 −10.58 22.24 8.101
−24 −0.0322 0.895 0.142 0.194 0.305 2 4.084 15.08 2.5146 −4.135 2.070
−23 0.338 2.090 0.356 −0.205 0.423 3 0.467 2.507 0.430 −0.343 0.471
−22 0.334 2.074 0.353 −0.200 0.421 4 1.536 6.050 1.046 −1.480 0.921
−21 0.323 2.040 0.347 −0.188 0.417 5 −1.817 −4.612 −0.88 2.135 0.692
−20 0.489 2.577 0.443 −0.366 0.479 6 1.459 5.790 1.002 −1.398 0.887
−19 −0.005.5 0.983 0.157 0.164 0.312 7 −0.955 −1.995 −0.389 1.192 0.358
−18 −0.424 −0.345 −0.0836 0.616 0.255 8 0.263 1.846 0.313 −0.124 0.396
−17 −0.299 0.0490 −001.12 0.481 0.259 9 0.329 2.060 0.351 −0.195 0.420
−16 1.002 4.264 0.739 −0.914 0.690 10 0.392 2.264 0.387 −0.262 0.443
−15 −0.103 0.672 0.101 0.269 0.289 11 0.562 2.817 0.485 −0.445 0.508
−14 −0.693 −1.187 −0.238 0.908 0.287 12 0.419 2.352 0.403 −0.292 0.453
−13 0.548 2.769 0.477 −0.429 0.502 13 −0.253 0.193 0.014 0.432 0.264
−12 −0.0980 0.688 0.104 0.264 0.290 14 0.196 1.630 0.274 −0.054 0.373
−11 −0.364 −0.156 −0.0490 0.552 0.258 15 −0.926 −1.908 −0.372 1.160 0.349
−10 −0.743 −1.341 −0.267 0.962 0.298 16 0.281 1.903 0.323 −0.143 0.402
−9 −0.781 −1.461 −0.289 1.004 0.308 17 0.241 1.776 0.300 −0.101 0.389
−8 0.163 1.524 0.255 −0.0169 0.362 18 0.461 2.486 0.426 −0.336 0.469
−7 −1.672 −4.181 −0.807 1.976 0.631 19 0.118 1.380 0.229 0.03102 0.348
−6 0.937 4.047 0.701 −0.844 0.662 20 −0.599 −0.892 −0.184 0.806 0.270
−5 0.505 2.631 0.452 −0.384 0.486 21 0.059 1.190 0.195 0.09484 0.330
−4 −0.518 −0.641 −0.137 0.718 0.260 22 0.370 2.191 0.374 −0.238 0.434
−3 −0.659 −1.079 −0.218 0.870 0.280 23 −0.0895 0.715 0.109 0.255 0.292
−2 3.698 13.65 2.2925 −3.738 1.894 24 −0.213 0.320 0.0379 0.389 0.269
−1 −17.60 −40.47 −10.02 21.00 7.682 25 −0.0165 0.947 0.151 0.176 0.309

Table 3. Numerical results of the present least-squares method applied to the field example (best fit in bold).

Depth Shape Polarization Electric dipole
a (m) Zc (m) factor qc angle θc (degree) moment kc (mV) rms (mV)

−104.1 36.3 0.74 −65.4 930.3 27.7
−93.69 35.1 0.73 −66.2 878.8 28.6
−83.28 36.0 0.74 −65.5 918.5 27.9
−72.87 34.9 0.73 −66.4 870.2 28.8
−62.46 36.3 0.74 −65.3 935.4 27.6
−52.05 40.8 0.80 −61.9 1191.8 25.9
−41.64 41.6 0.81 −61.3 1255.8 25.9
−31.23 42.3 0.82 −60.8 1304.7 26.0
−20.82 49.3 0.91 −55.7 2020.0 25.3
10.41 19.4 0.52 −77.9 486.7 55.1
31.23 94.2 1.56 −31.5 96555.1 95.5
41.64 66.1 1.14 −44.8 7040.2 52.8
52.05 79.5 1.33 −37.7 22790.5 73.3
62.46 47.2 0.88 −57.2 1760.2 28.4
72.87 65.4 1.13 −45.2 6671.9 51.8
83.28 78.1 1.31 −38.4 19882.8 71.13
93.69 116.2 1.94 −24.6 1156551.0 127.3
104.1 103.9 1.72 −28.1 273950.4 109.7

by the present higher derivatives and least-squares methods
agrees with the depth (53 m) obtained by Meiser (1962) using
a double logarithmic net method.

CONCLUSIONS

In this paper, we have improved our earlier derivative analy-
sis method to higher derivatives for determining the depth and
shape of a buried structure from SP data. We have shown that
numerical higher derivative SP anomalies are useful tools for
quantitative studies of SP data. Determining the depth, shape,
and optimum regional anomaly order is possible. The method
uses a simple model (sphere or cylinder) convolved with the
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FIG. 5. Data analysis of measured SP anomaly over a graphite
ore body, southern Bavarian woods, Germany, for s= 20.82,
31.23, 41.64, and 52.50 m using (a) second-derivative method,
(b) third-derivative method, (c) fourth-derivative method.

FIG. 6. Family of window curves of z as a function of q for
s= 20.82, 31.23, 41.64, and 52.50 m as obtained from the mea-
sured SP anomaly over a graphite ore body, southern Bavar-
ian woods, Germany, using (a) second-derivative method (b),
third-derivative method, and (c) fourth-derivative method.
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same second-, third-, or fourth-derivative filter as applied to
the observed SP data. As a result, this method can be applied
not only to residuals but also to observed SP data. The advan-
tage of the present higher derivatives analysis method over our
earlier work (Abdelrahman et al., 1997b, 1998) is that it works
well in the presence of regional components represented by a
polynomial of any order.

We have also developed a method, based on a least-squares
minimization approach to determine successively the depth
and shape of a buried structure from the residual SP anomaly.
The problem of determining the depth and shape from the SP
residual anomaly has been transformed into the problem of
finding a solution of a nonlinear equation and a linear equa-
tion, respectively. The advantage of the present least-squares
method over previous least-squares techniques (Abdelrahman
and Sharafeldin, 1997; Abdelrahman et al. 1997a) is that each
model parameter is computed from all observed data.

Given their relative strength, our methods complement the
existing fixed geometry methods of depth and shape determi-
nation, and overcome some of their shortcomings. Obtaining
these two parameters together is a powerful means to gain geo-
logical insight about the subsurface. Synthetic and field studies
demonstrate the efficiency of the present inversion techniques.

Finally, in view of the above facts, we envisage the application
of these two methods in solving various problems related to
potential field data interpretation in the future.
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